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Abstract Dexmedetomidine is an o,-adrenoceptor agonist
with sedative, anxiolytic, sympatholytic, and analgesic-
sparing effects, and minimal depression of respiratory
function. It is potent and highly selective for o,-receptors
with an o,,:0; ratio of 1620:1. Hemodynamic effects, which
include transient hypertension, bradycardia, and hypoten-
sion, result from the drug’s peripheral vasoconstrictive and
sympatholytic properties. Dexmedetomidine exerts its
hypnotic action through activation of central pre- and
postsynaptic o-receptors in the locus coeruleus, thereby
inducting a state of unconsciousness similar to natural
sleep, with the unique aspect that patients remain easily
rousable and cooperative. Dexmedetomidine is rapidly
distributed and is mainly hepatically metabolized into
inactive metabolites by glucuronidation and hydroxylation.
A high inter-individual variability in dexmedetomidine
pharmacokinetics has been described, especially in the
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intensive care unit population. In recent years, multiple
pharmacokinetic non-compartmental analyses as well as
population pharmacokinetic studies have been performed.
Body size, hepatic impairment, and presumably plasma
albumin and cardiac output have a significant impact on
dexmedetomidine pharmacokinetics. Results regarding
other covariates remain inconclusive and warrant further
research. Although initially approved for intravenous use
for up to 24 h in the adult intensive care unit population
only, applications of dexmedetomidine in clinical practice
have been widened over the past few years. Procedural
sedation with dexmedetomidine was additionally approved
by the US Food and Drug Administration in 2003 and
dexmedetomidine has appeared useful in multiple off-label
applications such as pediatric sedation, intranasal or buccal
administration, and use as an adjuvant to local analgesia
techniques.
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Key Points

Pharmacokinetic studies have shown that body size
and hepatic function have a significant influence on
the pharmacokinetic profile of dexmedetomidine.
Plasma albumin and cardiac output are suggested to
have an impact on the apparent volume of
distribution and clearance. Studies of the influence of
other patient characteristics have produced
inconclusive results.

Unlike sedative drugs such as propofol and the
benzodiazepines, dexmedetomidine does not act at
the gamma-aminobutyric acid (GABA) receptors. It
induces sedation through activation of o,-receptors
in the locus coeruleus and induces a state mimicking
natural sleep. Whilst sedated, respiration is
minimally affected and patients remain rousable.
Side effects are mainly hemodynamic and include
hypertension, hypotension, and bradycardia as a
result of vasoconstriction, sympatholysis, and
baroreflex-mediated parasympathetic activation.

Further research is needed to investigate the clinical
feasibility of different promising off-label
indications, such as use in the pediatric and geriatric
population, intranasal dexmedetomidine
administration, its use as an adjuvant to prolong
peripheral or spinal nerve blocks, and the potential of
dexmedetomidine to reduce opioid consumption.

1 Introduction

Dexmedetomidine is a selective and potent o,-adrenocep-
tor agonist that is used for its anxiolytic, sedative, and
analgesic properties [1]. It has been registered in USA
since 1999 (Precedex®; Hospira, Lake Forrest, IL, USA).
Originally, it was only approved for intravenous (IV)
administration for sedation of mechanically ventilated
adult patients in the intensive care unit (ICU), for up to
24 h [2]. In 2008, an additional indication was granted in
USA, which allowed the use of dexmedetomidine for the
sedation of non-intubated patients prior to and/or during
surgical and other procedures. Since 2011, dexmedeto-
midine has been approved in the European Union for the
sedation of adult ICU patients requiring a sedation level at
which patients remain rousable in response to verbal
stimulation (Dexdor®; Orion Corporation, Espoo, Finland)
[3]. On a more global perspective, differences in approved
indications of dexmedetomidine exist. In addition to this,
off-label use is frequently reported in the literature.
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Compared with clonidine, an a,-agonist that has been
used for several decades, dexmedetomidine has a greater
selectivity for op-receptors (on:0; ratio of 1620:1 vs.
220:1) [4]. As central o;-adrenoceptor activation coun-
teracts the sedative o, effects, dexmedetomidine is a
more potent sedative than clonidine [5]. An important
feature of dexmedetomidine-based sedation is that
patients remain easily rousable [6]. This aspect, com-
bined with the minimal influence on respiration, makes
dexmedetomidine an interesting alternative sedative in
many procedures, such as awake craniotomies and con-
scious sedation [7].

Side effects of dexmedetomidine are mainly restricted to
hemodynamic alterations. These include hypertension,
bradycardia, and hypotension owing to pre- and postsy-
naptic o-receptor activation, which causes vasoconstric-
tion, vasodilatation, and reflex bradycardia [8, 9].
Moreover, dexmedetomidine has been shown to attenuate
stress responses, thereby creating a more stable hemody-
namic profile during stressful events such as surgery or
anesthetic induction [10-12]. The aim of this article is to
critically review and summarize published data on the
clinical pharmacokinetics and pharmacodynamics of
dexmedetomidine in healthy volunteers, the targeted
patient populations, and several special patient populations.
This review also critically addresses several new clinical
applications of dexmedetomidine that have surfaced more
recently.

2 Methods

The MEDLINE database was searched through PubMed.
All English articles with a title containing dexmedeto-
midine and an abstract or title containing ‘pharmacoki-
netic(s)’, ‘pharmacodynamics(s)’ and/or ‘pharmacology’
were saved in a Mendeley library [13]. Additional searches
were performed including the keywords ‘hepatic failure’,
‘renal failure’, ‘elderly’, ‘pediatric’, ‘neonate(s)’, ‘inter-
actions’, ‘obese’, ‘analgesia’, and ‘intranasal’. After
screening titles for possible relevance, papers were added
to the Mendeley Library. All abstracts were screened and
when considered relevant, the paper’s full text was
obtained. Bibliographies of articles were reviewed and as
such additional potentially relevant papers were identified
and added to the library.

3 Drug Formulations and Dosing Regimens
Dexmedetomidine, or 4-[(1S)-1-(2,3-dimethylphenyl)ethyl]-

1H-imidazole, with molecular formula C;3H;¢N, [14], is the
dextro-enantiomer of medetomidine, which is used as a
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sedative and analgesic in veterinary medicine. Dexmedeto-
midine is commercially available as a water-soluble HCl
salt. Vials of Dexdor® and Precedex® contain a concentrate
of dexmedetomidine hydrochloride, equivalent to 100 pg/
mL dexmedetomidine. Prior to infusion, this is diluted to 4
or 8 ng/mL. Precedex is also available in pre-diluted solu-
tions containing the required concentrations of 4 pg/mL in
sodium chloride 0.9% [2, 3]. The Dexdor summary of pro-
duct characteristics advises an initial infusion rate of 0.7 pg/
kg/h without a loading dose, followed by titration to the
desired effect using a dose range of 0.2—1.4 pg/kg/h [3]. The
Precedex label specifies a dosing regimen consisting of a
1-pg/kg loading dose in 10 min followed by a maintenance
infusion of 0.2-0.7 pg/kg/h for ICU sedation. For procedural
sedation, a loading dose of 1 pg/kg in 10 min followed by a
maintenance infusion of 0.6 pg/kg/h, titrated to the desired
clinical effect with doses ranging from 0.2 to 1 pg/kg/h, is
recommended. Alternative dosing regimens can be consid-
ered in frail or elderly patients [2].

4 Pharmacokinetics
4.1 Absorption

Although dexmedetomidine is only registered for IV use,
multiple routes of administration have been investigated.
With extravascular administration, one can avoid the high
peak plasma levels normally seen after IV administration.
After oral administration, an extensive first-pass effect is
observed, with a bioavailability of 16% [15]. Dexmedeto-
midine is well absorbed through the intranasal and buccal
mucosae, a feature that could be of benefit when using
dexmedetomidine in uncooperative children or geriatric
patients (Sect. 9) [15-18].

4.2 Distribution

Dexmedetomidine is a highly protein-bound drug. In
plasma, 94% of dexmedetomidine is bound to albumin and
ao-glycoprotein. Pre-marketing studies with radioactively
labeled dexmedetomidine, showed a rapid and wide dis-
tribution throughout the body. In pre-clinical animal stud-
ies, it was found that dexmedetomidine readily crosses the
blood-brain and placenta barriers [2, 3]. Using non-com-
partmental analysis, a distribution half-life of about 6 min
was found in healthy volunteers [15, 19]. The apparent
volume of distribution was found to be related to body
weight, with a volume of distribution at steady state in
healthy volunteers of approximately 1.31-2.46 L/kg
(90-194 L) [16, 19-21]. In ICU patients, values are highly
variable and mean volumes of distribution from 109 to
223 L have been reported [22-24]. After long-term

infusion in ICU patients with hypoalbuminemia, an
increased volume of distribution at steady state was
observed [23-25].

4.3 Metabolism and Elimination

Dexmedetomidine is eliminated mainly through biotrans-
formation by the liver. A hepatic extraction ratio of 0.7 was
found [26]. Less than 1% is excreted unchanged with
metabolites being excreted renally (95%) and fecally (4%)
[2, 3, 19]. Direct N-glucuronidation by uridine 5’-diphos-
pho-glucuronosyltransferase (UGT2B10, UGT1A4)
accounts for about 34% of dexmedetomidine metabolism.
In addition, hydroxylation mediated by cytochrome P450
(CYP) enzymes (mainly CYP2A6) was demonstrated in
human liver microsomes [19, 27, 28]. In a pre-marketing
ADME study by Abbott Laboratories, a single injection of
2 pg/kg radioactively labeled dexmedetomidine was given
to healthy volunteers. The majority of the total plasma
radioactivity area under the curve consisted of
dexmedetomidine (14.7%), the N-glucuronide isomers
G-dex-1 (35%) and G-dex2 (6%), the O-glucuronide of
hydroxylated N-methyl dexmedetomidine (H-1) (21%),
and the imidazole oxidation product H-3 (10%) [19, 28].
These metabolites were 100-fold less potent in the o,-re-
ceptor assay and therefore considered inactive. No relevant
chiral inversion to the inactive levo-enantiomer was found
[28].

An elimination half-life of 2.1-3.1 h is reported in
healthy volunteers [15, 16, 19, 20, 29, 30]. In ICU patients,
similar values were found, with half-lives ranging from 2.2
to 3.7 h [22, 23, 25]. Non-compartmental analysis showed
that dexmedetomidine clearance in healthy adult volunteers
is approximately 0.6-0.7 L/min. Values range from 0.51 to
0.89 L/min [15, 19-21, 29, 30], with the highest value of
0.89 L/min being found by Wolf et al. in volunteers with a
relatively high body weight (mean 93.5 kg) [20]. In ICU
patients, (mostly post-surgical) clearance is similar to the
clearance found in healthy volunteers and ranges from 0.53
to 0.80 [22, 23, 25].

For dexmedetomidine, prolonged [23, 24] as well as
shortened [25] elimination half-lives have been reported
for patients with hypoalbuminemia. Clearance however, is
only marginally affected by hypoalbuminemia [23, 25].
This is in line with the “well-stirred” liver model, which
states that for compounds with a high extraction ratio, liver
blood flow is the most important factor governing hepatic
clearance and changes in plasma protein levels are
expected not to result in increased drug clearance [31]. The
impact on dexmedetomidine clearance as a result of
changes in liver blood flow, via changes in cardiac output,
was studied by Dutta et al. [26]. They describe an estimated
reduction in cardiac output of 19% associated with a
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reduced clearance of 12% at plasma dexmedetomidine
levels of 1.2 ng/mL (see also Sect. 5).

4.4 Dose Proportionality and Inter-Individual
Variability

Within the therapeutic range, dose proportionality has been
shown for dexmedetomidine [2, 3]. No relevant time
dependency has been reported. Nevertheless, a high inter-
individual variability is observed for clearance and distri-
bution volumes. Hypoalbuminemia, end-organ damage,
changes in hemodynamics, and decreased cardiac output
may all contribute to a high inter-individual variability,
especially in the ICU population [2, 3, 23, 24, 32].

Drug pharmacokinetics might be affected by ethnicity,
especially when a drug is highly protein bound or under-
goes hepatic metabolism [33]. A few small studies evalu-
ated the role of race in dexmedetomidine
pharmacokinetics/pharmacodynamics, but no clinically
relevant influence was observed [34, 35]. Furthermore,
Kohli et al. genotyped 40 subjects for five common
CYP2AG6 alleles and grouped them into normal (n = 33),
intermediate (n = 5), and slow (n = 2) metabolizers.
Although their study population was small and effects
could have been obscured by the complex clinical situa-
tion, they found no significant influence of these genotypes
on dexmedetomidine disposition in ICU patients [36].
Multiple other studies have evaluated the role of o-2A, -
2B, and -2C adrenoceptor polymorphisms, but no recom-
mendations to guide clinical dosing regimens have yet been
derived [37].

5 Population Pharmacokinetic Modeling
5.1 Adult Population

Several population pharmacokinetic (PopPK) models have
been developed to describe the pharmacokinetics of IV
administered dexmedetomidine in the adult population. For
a complete overview, the reader is redirected to Table 1.
Most of these models were derived from a small group of
postoperative ICU patients (median sample size 21, range
8-40) [22, 32, 38-41] or healthy volunteers (median
sample size 17, range 10-24) [21, 26, 29, 42]. In addition,
Vilitalo et al. [24] developed a PopPK model from three
phase III trials in which a prolonged dexmedetomidine
dosing regimen was evaluated in critically ill patients
(sample size 527).

Target-controlled infusion (TCI) was used in several
studies to target a specific, predicted dexmedetomidine
plasma concentration [38] or a sequence of plasma con-
centrations according to a “step-up” dosing design
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[21, 26, 42]. Dexmedetomidine plasma targets ranged from
0.49 to 8 ng/mL. In the other studies, dexmedetomidine
was delivered via a combination of a short (5-10 min)
loading dose followed by a maintenance dose. Loading
doses were administered at infusion rates ranging from 0.5
to 6 pg/kg/h and maintenance infusion rates ranged from
0.1 to 2.5 pg/kg/h, and were maintained for between
50 min and 96 h. In contrast to these fixed dosing designs,
in the study by Viilitalo et al., the maintenance dose was
individualized to achieve a Richmond Agitation-Sedation
Scale between 0 and —3, resulting in maintenance dose
levels varying between 0.2 and 1.4 pg/kg/h.

In most studies, a two-compartment PK model with zero-
order input to and linear elimination from the central com-
partment was used to describe dexmedetomidine disposition
and elimination. Four investigators [21, 26, 39, 42] found
that a three-compartment PK model best described
dexmedetomidine PK and the analysis by Viilitalo et al.
reported a one-compartment PK model as their final PK
model. To describe the observed variability in dexmedeto-
midine pharmacokinetics across and within subjects, dif-
ferent covariate models have been suggested. The central
and/or peripheral volumes of distribution (Vy, V5, V3) were
found to correlate with a subject’s age [29, 41], body weight
[41,42], fat free mass [40], serum albumin level [24, 32] and/
or whether or not a subject was undergoing surgery [40]. The
elimination and/or distributional clearance (CL, Q,, O3) was
found to vary significantly according to height [21, 39], body
weight [24, 42], or fat (free) mass [40], age [32], cardiac
output [26, 32], plasma albumin level [29] and/or alanine
aminotransferase activity [41].

In Fig. 1, the impact of the different covariate models on
the plasma concentration time profile is shown. For this, a
35-pg loading dose infused over 10 min (i.e., at an infusion
rate of 210 pg/h) followed by a 35-pg/h maintenance dose
was simulated according to the different models. This
dosing regimen corresponds to a 0.5-pg/kg loading dose
administered over 10 min and a 0.5-pg/kg/h maintenance
dose for a 70-kg subject. This fixed dose was chosen for
ease of interpretation, especially for those situations where
body weight was included in the covariate model.

When looking at the impact of different factors on the
PK profile in the first 2 h after dosing, it is clear that age,
plasma albumin concentration, and body size (fat-free mass
or total body weight) could have a significant impact on the
early time course of dexmedetomidine plasma concentra-
tions, particularly maximum plasma concentrations (Cpay)-
For age, there appears to be some discussion, with almost
no impact according to the model by lirola et al., a negative
correlation according to Lee et al. and a positive correlation
between C,.x and age according to Kuang et al. Results are
more consistent for plasma albumin and body size. For the
former, a positive correlation is seen, for the latter a
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Fig. 1 Simulated concentration time profiles according to the differ-
ent reported adult population pharmacokinetic models. A 35-ug
loading dose infused over 10 min (i.e. at an infusion rate of 210 pg/
h), followed by a 35-pg/h maintenance dose was simulated to
illustrate the impact of the different covariates on the concentration
time profile in the first 2 h after dosing. In addition, on the top of each
graph the predicted dexmedetomidine (DMED) plasma concentration

the validity and impact of this finding for dexmedetomidine
pharmacokinetics.

At present, the published PopPK models for
dexmedetomidine show that body size (total body weight
or fat-free mass) has a significant impact on C,,, as well as
C, and should therefore be taken into account when con-
sidering dexmedetomidine administration. Plasma albumin
and cardiac output are suggested to have an influence Ci,ax
and Cg, respectively, but the evidence and impact is
unclear. Otherwise, evidence in favour of an influence of
other patient characteristics is diffuse and inconclusive.

at steady state is shown for the typical patient with, between
parentheses, the expected fold-difference in the Cy for patients with a
covariate at opposite sides of the studied covariate range. ALB
albumin, ALT alanine aminotransferase, FFM fat free mass, TBW total
body weight. Created with R® (R foundation for statistical computing,
Vienna, Austria)

5.2 Pediatric Population

Potts et al. [43] and Wiczling et al. [44] studied the phar-
macokinetics of dexmedetomidine in pediatric intensive
care patients, whereas Su [45, 46] and Liu [47] studied
pediatric cardiac or general surgery post-operative patients.
Only Su [45] evaluated the PopPK of dexmedetomidine in
a neonatal population, i.e., 23 cardiac post-operative
patients with ages ranging from 1 to 24 days. In all these
studies, dexmedetomidine was delivered via a combination
of a short (5 or 10 min) loading dose followed by a
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maintenance dose. Loading doses were infused at between
0.25 and 6 pg/kg/h and maintenance doses ranged from 0.2
to 1.4 pg/kg/h or were individualized to achieve a Cook
scale between 7 and 14 points [44]. For a complete over-
view the reader is redirected to Table 2.

All authors found that a two-compartment linear model
was superior to a one- or three-compartment model for
describing dexmedetomidine pharmacokinetics. In these
pediatric PopPK models, most attention was directed
towards identifying the relationship between body size and
drug clearance and whether or not, in addition to the body
size effect, significant age-related differences were present.
The models are all based on allometric scaling and describe
changes in clearance and volume parameters using total
body weight raised to a power of 0.75 for clearance terms
and 1 for volume terms. Su et al. [45] reported that a lin-
early scaled model (i.e., all exponents being 1) performed
similarly to the allometric model. However, this was likely
owing to the limited range of body weights of patients
included in that study.

Three out of five studies report significant maturation
effects with dexmedetomidine clearance [43—45]. How-
ever, the magnitude and maturation profiles differ between
models. On the one hand, Potts et al. and Wiczling et al.
found that clearance at birth was approximately 43% of
adult values and matures with a half-time of 44.5 weeks to
reach 84.5% of the adult clearance by 1 year of age. On the
other hand, Su et al. found that a typical full-term newborn
has a clearance of approximately 54% of adult values and
that this clearance matures with a half-time of
40.14 weeks to reach adult levels by 1 month of age. Su
et al. suggested that their study, and not the study by Potts,
has the appropriate power to reliably detect these matura-
tional changes because of the inclusion of a cohort of
pediatric patients aged younger than 1 month. Apart from
the controversy between these reported maturational
changes, it is clear that in all studies the magnitude of the
inter-individual variability in clearance is substantially
greater than the effect of maturation. Thus, from a popu-
lation point of view, it is difficult to target a specific
dexmedetomidine plasma concentration in a pediatric
patient, regardless of age.

Overall, it seems that allometric scaling can be used to
predict dexmedetomidine pharmacokinetics in children
aged 1 year and older, which is in line with the findings in
adults. However, for younger children this is less clear.
Similar to the situation for the adult PopPK models, a
uniform model based on an aggregated dataset, in combi-
nation with more data on neonatal dexmedetomidine
pharmacokinetics, could provide better insight into the age-
related changes that govern dexmedetomidine clearance.

To produce better insights into the characteristics gov-
erning dexmedetomidine disposition and elimination in a

A\ Adis

wide-ranged population, a uniform model based on an
aggregated dataset consisting of all mentioned studies
should perhaps be developed. This approach has been
successfully applied in the past for propofol (cfr. the
openTCI website at opentci.org), leading to the general
purpose PK model for propofol [48] and has the potential
to deliver a more broadly supported PopPK model for
dexmedetomidine.

6 Pharmacodynamics
6.1 Sedative Effects

Sedation with dexmedetomidine resembles natural sleep
and mimics the deep recovery sleep that is seen after sleep
deprivation [49, 50]. Sedative and hypnotic effects of
dexmedetomidine are thought to be mediated through
activation of central pre- and postsynaptic o,-receptors in
the locus coeruleus and dexmedetomidine is thought to
influence endogenous sleep-promoting pathways [51, 52].
The exact mechanisms are not fully understood at the
moment, although it is known that receptors, other than
those acting on the gamma-aminobutyric acid system, play
a role [53-56].

The sedative effect of dexmedetomidine is concentration
dependent, with plasma concentrations between 0.2 and
0.3 ng/mL resulting in significant and rousable sedation.
Unarousable deep sedation is thought to occur at plasma
concentrations above 1.9 ng/mL [9, 57].

6.1.1 Intensive Care Unit Sedation and Delirium

Although the US Food and Drug Administration approved
dexmedetomidine for use up to 24 h only, multiple studies
showed an acceptable safety profile when using continuous
dexmedetomidine sedation up to 30 days in ICU patients
[58, 59]. In the MIDEX (n = 500) and PRODEX
(n = 498) trials [59], sedative properties of midazolam and
propofol were compared with dexmedetomidine (<1.4 png/
kg/h) in mechanically ventilated adult ICU patients. In
providing light to moderate sedation, dexmedetomidine
was found not to be inferior to midazolam or propofol.
Furthermore, a shorter time to extubation was observed
with dexmedetomidine. A Cochrane review covering seven
studies and 1624 participants [60], compared long-term use
of dexmedetomidine in ICU sedation with traditional
sedatives. Dexmedetomidine reduced duration of mechan-
ical ventilation by 22% and length of ICU stay by 14%. No
differences in mortality were found.

It is hypothesized that sedation with dexmedetomidine
results in a more physiologic sleep-wake cycle and patients
remain rousable and cooperative, thereby reducing the risk
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opioid-sparing effect is described and there may be an
effect when used with locoregional anesthesia techniques
(see also Sect. 9).

6.3 Cardiovascular Effects

Dexmedetomidine produces a typical biphasic hemody-
namic response, resulting in hypotension at low plasma
concentrations and hypertension at higher plasma concen-
trations [9, 57]. An IV bolus administration of
dexmedetomidine, which results in a high (peak) plasma
concentration, results in an increase in blood pressure
combined with a marked decrease in heart rate. During this
phase, a marked increase in systemic vascular resistance
has been shown [9, 57]. This is thought to originate from
ap-receptor activation in the vascular smooth muscles,
causing peripheral vasoconstriction and thereby hyperten-
sion. This is accompanied by a quick reduction in heart
rate, presumably caused by the baroceptor reflex [9]. After
a few minutes, when dexmedetomidine plasma concentra-
tions decrease, the vasoconstriction attenuates, as
dexmedetomidine also activates an-receptors in the vas-
cular endothelial cells, which results in vasodilatation
[69, 70]. Together with presynaptic o,-adrenoreceptors
inhibiting sympathetic release of catecholamines and the
increased vagal activity, this results in a hypotensive phase.
An average decrease, as compared with baseline, in mean
arterial blood pressure of 13-27% was observed and is
maintained for a prolonged period of time after the initial
dose [9, 57]. A sustained dose-dependent reduction in
circulating plasma catecholamines by 60-80%, as found in
multiple studies, is consistent with these long-lasting
sympatholytic effects of dexmedetomidine [9, 38, 57]. As
with initial high plasma concentrations after an IV bolus or
fast loading dose, higher maintenance doses are associated
with progressive increases in MAP [9]. The hypertensive
effects overcome the hypotensive effects at concentrations
between 1.9 and 3.2 ng/mL [3, 9].

Transoesophagal echocardiographic evaluations in
patients receiving dexmedetomidine infusions during total
IV anesthesia with propofol and remifentanil did not show
impaired systolic or diastolic function [71]. Cardiac output
was reduced as a result of a lower heart rate. Ebert et al.
who studied the effects of dexmedetomidine plasma con-
centrations varying from O to 15 ng/mL in healthy volun-
teers, also found that cardiac output gradually decreased
with heart rate. However, no decrease in stroke volume was
seen until plasma concentrations exceeded 5.1 ng/mL [9].

High dexmedetomidine plasma concentrations are
associated with significant increases in systemic and pul-
monary vascular resistance, resulting in pulmonary and
systemic hypertension [9]. This could be a limiting factor,
especially in patients with known cardiac problems, who

may rely on their heart rate to provide sufficient cardiac
output. If necessary, high plasma concentrations can be
avoided by decreasing loading dose sizes or by increasing
time over which the loading dose is administered.

6.4 Respiratory Effects

With therapeutic plasma concentrations up to 2.4 ng/mL,
minimal respiratory depression is seen with a preservation
of ventilatory response to CO, [1, 22, 72]. In a trial com-
paring remifentanil with dexmedetomidine in healthy vol-
unteers, no respiratory depression in the dexmedetomidine
session was observed for targeted plasma concentrations up
to 2.4 ng/mL. The ventilatory frequency increased with
increasing doses, which compensated for slightly decreased
tidal volumes. Hypercapnic arousal phenomena, similar to
those during natural sleep, were seen during dexmedeto-
midine sedation [72]. Even at supratherapeutic plasma
concentrations (up to 14.9 ng/mL) as studied by Ebert
et al., when volunteers were unarousable, respiratory drive
was unaffected, leading to only slight increases in carbon
dioxide levels (3—4 mmHg) and respiratory rates. How-
ever, a recently published paper by Lodenius et al. [73]
does describe a significant reduction in respiratory response
to hypercapnia and hypoxia in dexmedetomidine-sedated
young healthy volunteers with mean plasma concentrations
of around 0.66 ng/mL.

The hypercapnic ventilatory response is known to
decrease with age [74]. Elderly patients are therefore more
vulnerable to respiratory depression than young healthy
volunteers. When co-administered with other sedative,
hypnotic, or analgesic agents, an enhanced sedative effect
and increased risk of ventilatory depression or apnea is
reported [75]. In response to these findings, the summary of
product characteristics for Dexdor was updated in 2015,
stating that dexmedetomidine should only be used in an
intensive care setting with continuous cardiac and respi-
ratory monitoring.

7 Pharmacokinetic and Pharmacodynamic
Interactions

7.1 Pharmacokinetic Interactions

No relevant PK interactions were observed in studies where
dexmedetomidine (target concentrations ranging from 0.2
to 0.6 ng/mL) was combined with propofol, midazolam,
isoflurane, or alfentanil.

Pre-clinical studies showed that the half-maximal inhi-
bitory values (ICs) for dexmedetomidine against multiple
CYP isoforms are relatively high (0.65-70 uM). Because
therapeutic plasma concentrations are much lower
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(<10 ng/mL or <0.04 uM), the sponsor expected no sig-
nificant PK interactions with CYP-metabolized drugs in
clinical practice [2]. However, in rats, it was shown that
liver dexmedetomidine concentrations were almost
100-fold higher than plasma dexmedetomidine concentra-
tions [28, 76]. As such, interactions, especially related to
inhibition of CYP3A4, which is the isoform with the lowest
ICs50, could become important. Since its introduction onto
the market, several PK interactions have been described. In
one case report, a fourfold increase in tacrolimus concen-
trations after the start of dexmedetomidine infusion was
found and thought to originate from CYP3A4 inhibition
[76].

Furthermore, it was seen that volunteers with seizure dis-
orders using enzyme-inducing anticonvulsants (n = 8) had a
43% increased plasma clearance of dexmedetomidine when
compared with control subjects (n = 8) [77]. In general,
antidepressant use might be associated with alterations in the
PK and/or pharmacodynamic (PD) profile of dexmedeto-
midine, leading to an enhanced sedative effect [78].

More research is necessary to investigate whether
human liver dexmedetomidine concentrations are such that
CYP3A4, or other isoforms, could be inhibited to a sig-
nificant degree within the therapeutic range of
dexmedetomidine plasma concentrations.

7.2 Pharmacodynamic Interactions

Dexmedetomidine reduces requirements of other anes-
thetics such as isoflurane [79-81], sevoflurane [82, 83],
propofol [84-86], thiopental [87-90], and fentanyl [91].
Less sevoflurane was required during abdominal surgery
when co-administered with dexmedetomidine (1-pg/kg
loading dose and 0.5-pg/kg/h maintenance dose) [83].
Furthermore, a 21% lower sevoflurane half-maximal
effective concentration (ECsg) for laryngeal mask insertion
in children was found when premedication with
dexmedetomidine 2 png/kg was given intranasally [82].

Jang et al. [86] observed that the ECsq of propofol for
successful laryngeal mask insertion without muscle relax-
ants was 3.18 pg/mL in the group receiving the 1-pg/kg
dexmedetomidine premedication, compared with 6.75 pg/
mL in the group receiving saline placebo. Although
heterogeneity in study populations, dosing regimens, and
timing of drug administration obscures the results, a
reduction in the propofol requirement is found when co-
administered with dexmedetomidine. With the relatively
slow onset of dexmedetomidine, timing should be opti-
mized such that peak effects of both drugs occur at the
same time.

An opioid-sparing effect is described when using
dexmedetomidine perioperatively [92-94]. This might be
beneficial in reducing post-operative nausea or ventilatory
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depression as seen with opiates. A review and meta-anal-
ysis by Blaudszun et al. [95] describes a reduced post-
operative cumulative opioid consumption with clonidine
(—4.1 mg morphine equivalents) and dexmedetomidine
(—14.5 mg morphine equivalents), 24 h after surgery. A
recent Cochrane review summarizes seven studies with a
total of 492 participants and addresses the opioid-sparing
effect of perioperative dexmedetomidine for acute pain
after abdominal surgery in adults [96]. A modest reduction
in opioid consumption in the first 24 h after surgery was
found, although no clinically important differences in
postoperative pain were noted. Intraoperative dexmedeto-
midine infusion of 0.2-0.5 pg/kg/h reduced analgesic
consumption after craniotomy in two RCTs with 80 and 60
patients [92, 93]. In anesthetized patients, in general, pain
medication administration is often increased when heart
rate and blood pressure increase. The hemodynamic effects
of dexmedetomidine might confound the pain assessment
and as such, be responsible for the reduced intra-operative
opioid consumption.

Interactions between dexmedetomidine and antihyper-
tensive agents were investigated as part of the registration
procedure. [B-Blockers might lead to an increase in
hypotensive and bradycardic effects [3]. Calcium channel
blockers might attenuate the changes in heart rate and
blood pressure associated with dexmedetomidine infusion
without an effect on plasma catecholamine levels [3].

8 Special Populations
8.1 Renally Impaired

Dexmedetomidine is mainly hepatically metabolized.
Renal impairment does not influence the pharmacokinetics
of dexmedetomidine to any significant extent. In one study
comparing dexmedetomidine pharmacokinetics between
patients with severe renal impairment (creatinine clearance
<30 mL/min) and healthy volunteers, Wolf et al. [20]
found no difference in either volume of distribution or
elimination clearance. However, sedative effects lasted
longer in patients with renal disease. This was hypothe-
sized to originate from a lower plasma protein level and
hence higher unbound drug concentrations. However, this
hypothesis was negated by Karol and Maze who describe
no significant differences in dexmedetomidine plasma
protein binding in plasma from patients across four dif-
ferent renal function groups [19].

8.2 Hepatically Impaired

In hepatically impaired patients, a decreased clearance and
a higher unbound fraction of dexmedetomidine were
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observed. In a pre-registration study by Abbott Laborato-
ries, mean clearance values in patients with mild, moder-
ate, and severe hepatic impairment were 74, 64, and 53%
of those found in healthy subjects. The mean elimination
half-life of dexmedetomidine in healthy subjects was 2.5 h
and it was prolonged to 3.9, 5.4, and 7.4 h in patients with
mild, moderate, and severe hepatic impairment, respec-
tively. These findings were similar to those reported by
Cunningham et al. [97]. Dexmedetomidine plasma protein
binding in patients with mild, moderate, and severe hepatic
impairment was 87.9, 86.0, and 82.0% compared with
89.8% in normal subjects [19, 28]. Overall, the dosing
regimen of dexmedetomidine should be reduced in patients
with hepatic impairment, thereby accounting for the
changes in pharmacokinetics, PD response, and the degree
of hepatic impairment.

8.3 Pediatric Population

Although there is no approved indication in the pediatric
population, literature reports on pediatric applications of
dexmedetomidine have increased in number. In the sum-
mary of product characteristics of Dexdor, the section on
pediatric pharmacology was updated in 2013, stating that
dexmedetomidine in post-operative pediatric ICU patients
(>1 month and <17 years) is safe and efficacious during
use for up to 24 h [3, 98].

8.3.1 Children Aged 1 Month to 17 Years

In children aged older than 1 month, dexmedetomidine
appeared to exhibit a level of efficacy similar to that seen in
adults and to be fairly well tolerated. In young children
aged 2 months to 6 years, weight-adjusted plasma clear-
ance rates are slightly higher (0.8-1.2 L/kg/h) compared
with older children and adults (0.6-0.7 L/kg/h) [42, 43]. A
study with mainly post-operative pediatric ICU patients
older than 1 month, demonstrated a similar safety profile as
compared with the adult population. Loading doses of
0.5-1.0 pg/kg over 10-20 min were studied. In a study
with 669 pediatric subjects (0.1-22.5 years), dexmedeto-
midine was effective in providing sedation during nuclear
medicine imaging without a detrimental effect on respira-
tion. Hemodynamic adverse effects occurred more often in
older children but did not require any pharmacologic
intervention [99].

8.3.2 Neonates

Neonates form a special population where immaturity of
hepatic metabolism affects pharmacokinetics (see Sect. 5.2
and Table 2) [100-102]. In neonates, body composition, fat
distribution, and lower protein and albumin levels may

contribute to a larger volume of distribution and an
increased elimination half-life. Furthermore, an immature
blood—brain barrier may cause higher cerebrospinal fluid
concentrations with increased sedative and analgesic
effects [103]. Chrysostomou et al. [104] investigated
dexmedetomidine = pharmacokinetics in 24  term
(3644 weeks) and 18 preterm (28-36 weeks) neonates.
Preterm neonates had lower weight-adjusted plasma
clearance (0.3 vs. 0.9 L/h/kg) and an increased elimination
half-life (7.6 vs. 3.2 h) than term neonates. Premature
neonates were adequately sedated with dexmedetomidine
alone, although doses up to 0.2 pg/kg/h were not sufficient
in most term neonates. For an overview of available
models that describe the maturation of the clearance in
neonates, the reader is redirected to Sect. 5.2.

Most side effects of dexmedetomidine are related to
sympatholytic effects and appear to be dose dependent and
predictable in neonates. With the relatively low doses
studied by Chrysostomou et al., no significant hemody-
namic and respiratory changes were found [104]. One case
of hypothermic bradycardia in a neonate has been reported
[105]. Thermoregulation in neonates depends primarily on
vasoconstriction and non-shivering thermogenesis by
lipolysis. As these mechanisms are both affected by
dexmedetomidine, neonates are particularly vulnerable for
hypothermia [106, 107].

8.4 Elderly

In multiple PK studies, age does not clearly influence the
PK profile of dexmedetomidine [2, 42, 108]. In a pre-reg-
istration phase I study in 60 healthy volunteers, after bolus
administration of 0.6 pg/kg dexmedetomidine over 10 min,
no difference in dexmedetomidine pharmacokinetics was
seen between groups aged 18-40 years (n = 20),
41-65 years (n = 20), and older than 65 years (n = 20)
[28].

In the elderly, sedative effects seem to be more pro-
nounced. Lower doses of dexmedetomidine were needed to
provide adequate sedation in elderly patients (aged
65-78 years) as compared with younger patients (aged
4564 years) [109]. In another study, excessive sedation
occurred in 46 and 60% of elderly patients (aged
>60 years) receiving 0.5 and 1 pg/kg dexmedetomidine,
respectively, [110]. In a study by Ko et al. [111], loading
doses of 0.1-1.0 pg/kg over 10 min were well tolerated in
47 elderly subjects (aged >65 years). Hypotension was
observed more frequently in patients receiving loading
doses of >0.7 ng/kg. The registration documents of the
Food and Drug Administration and European Medicines
Agency report a higher incidence of bradycardia and
hypotension in patients aged older than 65 years [2, 3].
Age-adjusted dosing is not recommended, although caution
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is warranted as hemodynamic and sedative effects might be
more pronounced in elderly patients who are often have
multiple co-morbidities.

8.5 Obese

Obese patients are prone to obstructive apnea and opioid-
related ventilatory depression. Therefore, several studies
were performed regarding the use of dexmedetomidine as
an anesthetic adjunct in morbidly obese patients under-
going bariatric surgery [112-115]. Tufanogullari et al.
[113] studied doses up to 0.8 pg/kg/h in a total of 80
patients. In dexmedetomidine groups, end-tidal desflurane
concentrations were reduced by 19-22%. In the post-
anesthesia care unit, patients in the dexmedetomidine
groups needed less rescue fentanyl, less anti-emetic
therapy, and had a shorter length of stay. A dose of
0.2 pg/kg/h appeared to be effective while minimizing
cardiovascular side effects. In another study, a
dexmedetomidine 0.8-pg/kg bolus was followed by a 0.4-
pg/kg/h continuous infusion and compared with placebo
in a total of 80 patients [112]. Decreased amounts of
fentanyl and propofol were required for maintenance
anesthesia and more stable hemodynamics were descri-
bed, whilst postoperative pain and total amount of mor-
phine were decreased. Feld et al. [114] compared
dexmedetomidine with fentanyl as an adjunct to desflu-
rane anesthesia and concluded that dexmedetomidine use
decreased heart rate, blood pressure, desflurane require-
ments, post-operative pain level, and morphine use in the
post-anesthesia care unit compared with fentanyl.

9 New Clinical Applications

Various interesting off-label applications of dexmedeto-
midine have been investigated over the past few years.

9.1 Prevention of Emergence Agitation

A recent meta-analysis [116] including 19 randomized
controlled trials compared dexmedetomidine with other
regimens in preventing post-operative emergence agitation
in children aged 0-18 years. This meta-analysis concluded
that dexmedetomidine was more effective than placebo,
propofol, and remifentanil in preventing emergence agita-
tion. Effectiveness was similar to that of ketamine and
midazolam. One RCT addressed this subject in 115 elderly
(aged >65 years) patients undergoing orthopedic surgery.
They more frequently found a calm state at emergence in
groups receiving dexmedetomidine compared with pla-
cebo, as an adjuvant to total IV or sevoflurane anesthesia
[117].
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9.2 Intranasal Use

The intranasal route is the most used extravascular route of
administration of dexmedetomidine in clinical practice. It
can be useful for sedation and premedication in pediatric
subjects [18, 118-120]. After an intranasal dose of 84 g
dexmedetomidine in healthy volunteers, a lag time of
2-3 min was described and the time to maximum plasma
concentration was reached 38 min after administration.
Bioavailability was found to be 82% [16, 17]. In another
study, intranasal doses of 1-4 pg/kg dexmedetomidine
were investigated in healthy volunteers and children. Sig-
nificant sedation, with an onset time of 15-45 min, was
observed for 1-2 h and was well tolerated [118, 121-123].
Moreover, 1-2 pg/kg intranasal dexmedetomidine was
found to attenuate the stress response caused by intubation
in children [124]. Premedication with intranasal
dexmedetomidine also reduced the minimum alveolar
concentration of sevoflurane needed for laryngeal mask
insertion or tracheal intubation [82, 125, 126].

Recently, Li et al. [18] compared 3 pg/kg intranasal
dexmedetomidine, administered by atomizer or drops in
279 children under 3 years of age. Both were equally
effective. A disadvantage for intranasal dexmedetomidine
when compared with midazolam or ketamine is the rela-
tively slow onset of effect [119, 120]. When comparing IV
1 pg/kg  dexmedetomidine with intranasal 1 pg/kg
dexmedetomidine, onset times were 15-20 and 30-45 min,
respectively [127]. Further research regarding the efficacy,
safety, and tolerability in elderly subjects as well as studies
regarding optimal timing and dosing regimens are required.

9.3 Patient-Controlled Analgesia

Opioid-dexmedetomidine combinations for post-operative,
patient-controlled analgesia systems are being evaluated. A
meta-analysis of seven randomized controlled trials con-
cluded that this combination is safe and effective [128].
When compared with an opioid alone, lower post-operative
pain intensity scores, lower incidence of post-operative
nausea and vomiting, lower morphine-equivalent con-
sumption, and a higher patient satisfaction were found. An
opioid-sparing effect might be beneficial for patients at risk
for post-operative nausea and vomiting or respiratory
depression.

9.4 Prolongation of Spinal or Peripheral Nerve
Blocks

o-Agonists are frequently used as an adjuvant to prolong
duration of spinal or peripheral blocks [129, 130]. In a
meta-analysis by Abdallah et al. [131], it was found that IV
dexmedetomidine interacts synergistically with regional
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anesthesia. It prolonged the duration of sensory block by at
least 34%, motor block by at least 17%, and it prolonged
the time to first analgesic request by at least 53%. Pro-
longed analgesic duration was also described in a system-
atic review on the perineural use of dexmedetomidine by
Wu et al. [132]. A recent RCT by Abdallah et al. [129]
compared perineural and IV dexmedetomidine with pla-
cebo as adjuvant to interscalene plexus blocks. The dura-
tion of analgesia was 10.9, 9.8, and 6.7 h in the perineural
dexmedetomidine, IV dexmedetomidine, and placebo
groups, respectively. The authors concluded that both IV
and perineural dexmedetomidine can effectively prolong
interscalene block analgesia without prolonging motor
blockade.

Although the exact mechanisms of action are unclear,
these effects are thought to occur partly through local
perineural mechanisms with prolonged hyperpolarization
of sensory C fibers and, to a lesser degree, the motoric A
fibers. Direct central effects on the locus coeruleus seem to
play a role as well [5, 52, 129].

9.5 Organ Protective Properties

ar-Receptors are found in multiple organs such as the liver,
lungs, kidneys, and brain. In animal studies, dexmedeto-
midine appears to attenuate renal inflammation responses
and ischemia reperfusion injury [133, 134]. In addition,
neuro- and cardioprotective properties have been descri-
bed. Several mechanisms are reported to be involved, such
as activation of pro-survival kinases [135], modification of
oxidative and inflammatory responses [136], and activation
of the endothelial nitric oxide synthase [137]. In animal
studies, it was found that dexmedetomidine potentially
protects against neuro-apoptosis caused by other agents
[138—140]. This contrasts with frequently used drugs such
as opioids and benzodiazepines, which can cause neu-
rodevelopmental abnormalities in neonatal animals.
Moreover, improved neurologic outcome and attenuated
cerebral necrosis were found in animal models of induced
cerebral ischemia and reperfusion [141]. These neuropro-
tective properties are thought to originate from a reduced
cerebral catecholamine and glutamate release and modu-
lation of apoptosis-regulating proteins [141, 142].

9.6 Antagonists

Two major limitations regarding dexmedetomidine use are
its long-lasting effects and its hemodynamic side effects. A
safe and quick reversal of these effects would benefit
clinical practice, presumably leading to a more widespread
use of dexmedetomidine. The selective o,-antagonist ati-
pamezole can effectively reverse dexmedetomidines
hemodynamic and sedative effects [143—-145]. The

reduction in heart rate and blood pressure caused by
dexmedetomidine is quickly reversed after IV administra-
tion of 15-150 pg/kg atipamezole. Higher doses of ati-
pamezole (150 pg/kg) also reverse sedation. Transient
orthosympathic activation, with a 10-fold increase in
plasma norepinephrine levels is seen with higher doses or
fast infusion rates [143]. However, atipamezole is currently
only used in veterinary medicine and is not approved for
use in humans.

10 Conclusions

Dexmedetomidine is an efficacious and safe drug used to
sedate patients in the ICU and/or during procedural seda-
tion. Its PK and PD properties have been studied exten-
sively, both within and beyond the scope of the currently
approved indications. Dexmedetomidine exposure is
mainly governed by its hepatic clearance. Hepatic impair-
ment was shown to have an impact on the pharmacoki-
netics and should therefore be taken into account when
choosing a dosing regimen. From the reported PK studies,
it seems that the bodyweight-adjusted dosing that is cur-
rently applied is only justified for non-obese patients. For
obese patients, other body size descriptors, e.g., fat-free
mass, are potentially more appropriate. Evidence in favour
of the influence of other patient characteristics, such as
plasma albumin levels, cardiac output, and age is less
convincing. Furthermore, at the moment, much uncertainty
remains on the maturation of the hepatic clearance in
neonates/children and therefore thoroughly validated age-
based dosing regimens are lacking.

The sedative, analgesic, and cardiovascular effects of
dexmedetomidine are well described. Nevertheless, at the
moment, quantitative PK/PD models, which could help to
delineate the variability in the observed effects, are not
available. Respiratory depression is unlikely when
dexmedetomidine is used alone. However, recent reports
suggest that when it is combined with other sedatives or
hypnotics, there is an increased risk, necessitating contin-
uous respiratory monitoring. Other PD interactions as well
as PK interactions have been described. Some of these,
e.g., the opioid-sparing effect, are studied as new treatment
modalities but more research is needed to better charac-
terize the underlying mechanisms.
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