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Purpose of review

Glomerulonephritis is a challenging complication of

systemic lupus erythematosus that still results in kidney loss

in up to 30% of patients. In this review we highlight the

development of integrated efforts to link pathogenesis with

disease definition and new therapeutics.

Recent findings

Immune complex deposition in the kidney initiates an

inflammatory cascade that causes glomerular disease but

there are many modulating factors including genetic

predisposition, products of the innate immune system,

cytokines, complement and activated cells (both renal and

immune). Animal models can help dissect potential disease

mechanisms but the study of multiple models will be

required since there are multiple subsets of human disease.

Recent therapeutic studies in humans address the

distinction between therapies for remission induction and

remission maintenance. Multiple studies confirm the

therapeutic equivalence of mycophenolate mofetil and

cyclophosphamide in induction of remission but results are

still far from ideal. The next few years should see the testing

of new biologic reagents in humans. Another area of interest

is the search for noninvasive measures of disease and

disease response.

Summary

Although there has been remarkable progress in our

understanding of the immunology and phenotype of lupus

nephritis current therapies have insufficient efficacy. As new

therapies emerge, improved clinical design coupled with

mechanistic studies will be needed to identify agents that

may be effective only in some patient subpopulations.

Keywords

biologic therapies, biomarkers, cytotoxic drugs, mouse

models, SLE nephritis

Curr Opin Rheumatol 18:468–475. � 2006 Lippincott Williams & Wilkins.

aDepartments of Medicine, Columbia University Medical Center and bDepartments
of Microbiology, Columbia University Medical Center, New York, New York, USA

Correspondence to Anne Davidson, 1130 St Nicholas Ave Room 918, New York,
NY 10032, USA
Tel: +1 212 851 4571; fax: +1 212 851 4548; e-mail: ad2247@columbia.edu

Current Opinion in Rheumatology 2006, 18:468–475
opyright © Lippincott Williams & Wilkins. Unautho

468
Abbreviations
CR c
rized
omplete response

MCP-1 m
onocyte chemotactic factor 1

MMF m
ycophenolate mofetil

PR p
artial response

SLE s
ystemic lupus erythematosus

TNF tu
mor necrosis factor

Treg re
gulatory T-cell
� 2006 Lippincott Williams & Wilkins
1040-8711

Introduction
Systemic lupus erythematosus (SLE) nephritis is charac-

terized by immune-complex mediated glomerular and

tubulointerstitial inflammation leading to chronic renal

insufficiency in up to 30% of affected patients. In this

review we will focus on developments in the pathogen-

esis and treatment of SLE nephritis published over the

last 12–18 months.

Pathogenesis of systemic lupus
erythematosus nephritis
It is generally accepted that SLE nephritis is initiated by

the glomerular deposition of immune complexes. The

precise specificity of nephrotoxic autoantibodies is

unknown but several renal targets have been identified

using Western blotting of mesangial cell extracts or

phage display libraries [1]. These are not always repro-

ducible suggesting that multiple specificities exist [2,3].

One small study of 37 patients shows that only a subset of

autospecificities in the serum correlates with nephritis

including antibodies to DNA, glomerular extracts

and laminin, specificities also identified in murine

SLE [4��]. Deposition of immune complexes in the

kidneys, however, can occur even in the absence of

anti-DNA antibodies [5,6]. The mechanism for glo-

merular antibody deposition has recently been reviewed

[7�]. Immune complexes in the mesangium or suben-

dothelium that contact the extravascular space appear to

recruit inflammatory cells, whereas the glomerular base-

ment membrane prevents the recruitment of inflamma-

tory cells to the subepithelial space. The isotype of

the deposited antibody also influences pathogenicity.

In membranous disease antibody deposits are skewed

to Th2 dominated isotypes [8] that fix complement

poorly.

Renal autoantibody deposition triggers a cascade of inflam-

matory events. In NZB/W F1 [9], but not MRL/lpr [10]
 reproduction of this article is prohibited.
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mice engagement of activating Fc receptors on bone

marrow derived myeloid cells is required for the initiation

of a glomerular inflammatory response. Complement

recruitment and activation is also an early feature of

SLE nephritis (reviewed by Turnberg and Cook

[11��]). Inflammatory responses may be amplified in situ
by the renal production of complement components and

by the recruitment of anti-C1q autoantibodies to the

sites of immune-complex and complement deposition

[12]; antibodies to C1q are associated with active

SLE nephritis [13,14]. Therapeutic studies in mice

show that blockade of C5 retards the development of

kidney disease both in the NZB/W and MRL/lpr models

[15,16].

Although autoantibody deposition in the kidneys is

an important pathogenic component of SLE nephritis

it is increasingly recognized that signals from the

innate immune system and cellular immunity also con-

tribute to renal disease. Immune complexes directly

activate resident renal cells through Toll-like recep-

tors to produce inflammatory mediators. Cytokines can

induce endothelial cells to express adhesion molecules,

increasing the probability that they will recruit inflam-

matory cells after contact with immune complexes

[17�]. Some SLE patients develop a non-inflammatory

podocytopathy in which podocyte damage is mediated

by soluble inflammatory mediators [18�]. In MRL/lpr

mice T-cell mediated interstitial renal disease and

vasculitis together with mild glomerular changes can

occur even in the complete absence of immunoglobulins

[19]. Microvascular damage and thromboses also occur

in the setting of SLE nephritis and may be more

common in patients with antiphospholipid antibodies

[20�].

B-cells, T-cells, macrophages and dendritic cells are

recruited into the inflamed kidney. Little is known

about this process including the order in which cells

appear, their activation state, their ability to proliferate

in situ, and their presentation of or activation by renal

antigens. Recent studies of remission induction in mice

suggest that cellular infiltration into the kidneys is a

dynamic process regulated by local chemokine pro-

duction. In NZB/W mice, treatment of established

nephritis with a combination of cyclophosphamide and

CTLA4Ig does not alter renal immune complex depo-

sition but does induce remission [21,22]. This is second-

ary to downregulation of expression of multiple

chemokines in conjunction with a decrease in the number

of activated lymphocytes capable of migrating to the

kidney [21]. Thus the initiation of nephritis by immune

complexes can be delayed if downstream effector mech-

anisms, that is, cell activation, migration or death, are

altered. This concept offers potential new therapeutic

approaches.
opyright © Lippincott Williams & Wilkins. Unauth
Both the risk and severity of nephritis are influenced by

genetic polymorphisms [23�,24]. Several small studies

[25–29] in the last year have reported genetic polymorph-

isms that associate with risk or severity of SLE nephritis.

A novel association reported this year is a low copy

number of the Fcg receptor 3B with SLE nephritis.

Deficiency of this receptor is associated with suscepti-

bility to glomerulonephritis in rodents perhaps due to

poor clearance of immune complexes by neutrophils

[30��]. Meta-analyses testing associations of genetic poly-

morphisms with general SLE are underway [31,32�]. In

the future, such analyses in SLE nephritis may predict

the risk of renal disease and damage in SLE patients and

help influence therapeutic decisions.

New clinical trials in humans
There are a number of recent reports examining the

effects of therapeutic interventions for lupus nephritis

but definitive double-blind placebo controlled studies are

scarce. Clinical investigation of lupus nephritis is difficult

as there are no universally accepted measures of renal

activity, or progression, or of complete response (CR) and

partial response (PR). Studies often define these out-

comes differently. Recommendations to standardize the

study of lupus nephritis and guidelines for the length of

studies for induction and maintenance of remission have

recently been published [33�]. An additional advance is

the new histologic classification by the International

Society of Nephrology (ISN)/Renal Pathology Society

that should provide an improved framework for standard-

ization of patient populations [34]. Two reports using the

ISN classification on observational cohorts both show that

classification is an accurate predictor of outcome and

suggest a poorer prognosis of Class IV-S (segmental

lesions) versus Class-IV-G disease (global lesions)

[35��,36]. Thus, the prognostic value of an initial renal

biopsy appears clear.

Non-biologic agents

Until recently the accepted standard of care for remission

induction has been monthly intravenous, cyclophospha-

mide 0.75–1.0 g/m2. Low dose cyclophosphamide regi-

mens have also been effective [37]. One recent report

[38] describes a low dose cyclophosphamide regimen

given at fixed intervals until a CR was achieved. Although

41.9 and 21.3% of patients achieved CR and PR at 1 year,

the mean cumulative dose of cyclophosphamide at

2 years was substantial, 14.1 g. Oral cyclophosphamide

continues to be administered in some centers. One

report of 212 Chinese patients with diffuse proliferative

glomerulonephritis showed a 59% CR and 26% PR

with either oral or intravenous cyclophosphamide. Better

outcome correlated with the total dose of cyclophospha-

mide with no effect of the route of cyclophosphamide

administration on renal outcome. Five, 10 and 15-year

renal survival rates were 88.7, 82.8 and 70.7% [39�].
orized reproduction of this article is prohibited.
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A second report [40�] showed complete remission in

82.4% of 66 patients with DPGN treated with oral

cyclophosphamide but a 39.1% rate of relapse during a

mean follow-up of 91.7 months on azathioprine and

prednisolone.

Insufficient efficacy and poor tolerability of cyclopho-

sphamide have led to the evaluation of other agents for

remission induction. Multiple open-label reports show

that mycophenolate mofetil (MMF), a selective inhibi-

tor of inosine-monophosphatase-dehydrogenase induces

renal remission. A randomized, open-label trial of 140

patients with proliferative nephritis comparing pulse

cyclophosphamide to MMF demonstrated that MMF

was more effective than cyclophosphamide in achieving

CR (22.5% versus 5.8%) after 24 weeks but there was no

difference in PR (29.6% versus 24.6%) [41��]. Another

smaller study [42�] comparing MMF to intravenous

cyclophosphamide showed that CR was achieved in only

12 and 26% (NS) of 44 patients receiving cyclophospha-

mide or MMF respectively. A previous trial of MMF or

oral cyclophosphamide in 42 patients with proliferative

nephritis showed MMF to be equally effective and less

toxic for induction of remission [43]. Long-term follow-

up subsequently showed MMF’s capability to maintain a

renal response. During a median follow-up of 63 months

nine of 31 patients induced with oral cyclophosphamide

and maintained with azathioprine relapsed compared

with 11 of 33 patients induced and maintained on

MMF. There was additionally no difference in a compo-

site endpoint of end-stage renal disease or death in either

of the two treatment regimens [44��]. This is similar to

previous reports comparing maintenance with MMF,

azathioprine or quarterly cyclophosphamide [45,46�].

MMF and azathioprine, however, were each superior

to cyclophosphamide in preventing a composite endpoint

of end-stage renal disease or death. Of note, the utility of

determining thiopurine S-methyltransferase genotype

polymorphisms for identifying individuals at risk for

azathioprine toxicity continues to be controversial. No

association between TPMT genotype and toxicity was

found in Korean patients with lupus [47]. Finally, there

have been two reports of successful MMF treatment for

membranous nephritis [48,49].

These studies in sum suggest that MMF appears at least

equivalent to cyclophosphamide for remission induction

with the advantage of a better safety profile, and that

either MMF or azathioprine can maintain remission.

Rates of remission induction are not optimal, however,

and relapses continue to occur at unacceptably high rates

[50,51,52�], fueling the search for better therapeutic

options.

Small trials of several other immunosuppressive reagents

for remission induction have been reported in the last
opyright © Lippincott Williams & Wilkins. Unautho
year. These include another inhibitor of inosine-mono-

phosphatase-dehydrogenase, mizoribine [53], tacrolimus

[54] and leflunomide [55]. The efficacy and safety of

these agents needs to be determined [56]. Angiotensin

converting enzyme inhibitors may be adjunctive agents

for lessening proteinuria in patients with lupus nephritis

[57�,58,59�].

Biologic agents

Anti-tumor necrosis factor (TNF)a agents are available

and widely used by rheumatologists. Their use in lupus is

tempered since they exacerbate disease in the NZB/W

mouse and induce antibodies to dsDNA and lupus syn-

dromes in humans. They have even induced lupus nephri-

tis [60]. Thus TNFa appears to protect against initiation of

lupus-like diseases. TNFa is present, however, within the

inflamed SLE kidney and may be a pathogenic effector

cytokine. In one published report, a short course of inflix-

imab given to six patients with active lupus (four with

nephritis) decreased proteinuria within 1 week of starting

therapy. Proteinuria reached at least 60% of baseline after 8

weeks. In contrast, anti-dsDNA and anticardiolipin anti-

body titers increased in four patients although no clinical

flare or drop in serum complement occurred [61�]. The

long-term efficacy and safety of anti-TNFa agents in all or

a subset of lupus nephritis may be clarified in larger, long-

term, randomized studies. Routine off label use of these

agents should probably be discouraged until further infor-

mation is available.

Intravenous immunoglobulin (IVIg) continues to be used

for lupus nephritis resistant to other therapies although

there are no controlled trials for this indication, probably

due both to expense and relative shortage. Potential

mechanisms of IVIg efficacy in SLE remain controversial.

One possibility is via blockade of Fc receptors. Efficacy of

the Fab’2 fragments, however, has also been reported

(reviewed by Zandman-Goddard et al. [62] and Toubi

et al. [63]). Removal of immunoglobulins through plas-

mapharesis has been previously explored as an approach

to lupus nephritis and proved ineffective [64]. More

recently, immunoabsorption was studied in 16 lupus

nephritis patients. After 12 months of follow-up, mean

proteinuria was significantly lowered and other measures

of disease activity were significantly improved although

not to normal or inactive levels [65].

The efficacy of B-cell depletion for lupus nephritis is

unknown and a randomized double-blind placebo con-

trolled trial of anti-CD20 (rituximab) is underway. The

results of open label studies of anti-CD20 in SLE nephri-

tis were recently reviewed [66,67��]. One intriguing

observation in a small number of patients is that B-cell

reconstitution following anti-CD20 antibody may be

associated with loss of an autoreactive memory B cell

subset suggesting a possible disease modifying effect
rized reproduction of this article is prohibited.
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[68]. It is still unclear, however, whether multiple

courses of this reagent can be safely given and whether

permanent deficiencies in protective responses may

ensue.

Development of biomarkers for nephritis
Noninvasive measures of renal activity have become

more advanced and may eventually be used to predict

risk of nephritis, to detect preclinical nephritis, to act as

surrogate markers for severity or histologic subtype of

nephritis, or as surrogate endpoints for clinical remission,

or even as markers for response to a particular therapy.

Several new studies have reported potential biomarkers

for lupus nephritis. Unfortunately, a uniform definition of

renal disease and clinical outcome correlations are miss-

ing in most of these studies. Approaches include discov-

ery-based methods such as microarray technology to

analyze differential expression of genes in lupus kidneys

[69,70�] or proteomic methods to identify urinary proteins

in patients with nephritis [71�]. The limited data avail-

able so far suggest a considerable degree of heterogeneity

among SLE patients (reviewed by Schmid et al. [72��]). A

second approach uses quantitative PCR or antibodies to

identify known specificities in the serum or urine. Inter-

estingly, a relatively large study [73] showed the pre-

dominance of the Th1 transcriptional regulator T-bet

over the Th2 transcriptional regulator GATA-3 in

patients with active class IV but not class V glomerulone-

phritis, implying that the local effector response in pro-

liferative glomerulonephritis is Th1 dominated. Several

small studies of urine sediment mRNA have documented

expression of a number of chemokines and cytokines,

some of which decrease upon remission [73–75,76��].

Monocyte chemotactic factor 1 (MCP-1) (or CCL2) [77–

79] and adiponectin proteins [80] have been identified in

the urines of a subgroup of nephritis patients and MCP-1

levels decrease during remission [78,79]. In one study of

106 patients which included 49 with active nephritis,

expression of MCP-1 mRNA in the urine sediment

correlated with both histologic activity index and SLE

Disease Activity Index [81]. In MRL/lpr mice, MCP-1

antagonism attenuates disease, supporting the notion

that it is indeed a pathogenic chemokine [82]. Interest-

ingly, soluble levels of endothelial protein C receptor, a

marker for vascular injury, were found to correlate with

serum creatinine in one cross sectional study [17�].

Multiplexed assays of serum and urine are currently

under development (reviewed by Balboni et al. [83�]).

With respect to urine, these studies are likely to prefer-

entially detect proteins stable enough to survive a vari-

able time in the bladder and that are soluble rather than

membrane-bound or intracellular. Longitudinal prospec-

tive studies will be required to determine the predictive

value of any markers and to assess any potential benefit

over standard screening assays that detect glomerular

capillary leak.
opyright © Lippincott Williams & Wilkins. Unauth
Advances in therapeutics
The development of new therapeutics for SLE is pro-

gressing rapidly as knowledge of pathogenic mechan-

isms increases. Potential new therapies for SLE patients

were recently reviewed [84��] and will not be discussed

further. Novel targets identified in the last year using

mouse studies are shown in Table 1 [16,85�,86,87�,88��,

89,90�,91,92��,93��,94–99,100�,101,102,103�,104–108].

Most of these studies are preventive rather than remission

inducing. It is also important to note that studies using

targeted gene deletion address the relevance of a particu-

lar target with respect to disease initiation but may not

necessarily predict a therapeutic effect during the effector

stages of disease. Some interventions are based on

depletion of particular lymphocyte subsets or antagonism

of cytokines, while others such as chemokine or comp-

lement inhibitors are directed against the inflammatory

response in the target organ. It is clear, however, that

‘normal’ trafficking of cells to target organs is protective in

the absence of inflammation and may additionally be

required for egress of inflammatory cells [109,110]. In

addition, normal trafficking of regulatory cells may help

modulate the inflammatory response. General questions

remain about therapeutic strategies including whether it

is possible to reduce the autoreactive response without

producing systemic immunosuppression or to restore self-

tolerance with a single therapeutic agent. Restoration of

some aspects of self-tolerance was achieved both in Toll-

like receptor (TLR)9 knockout mice [85�] and in NZB/W

mice treated with a combination of CTLA4Ig and CD40L

blockade [111]. In both models the autoantibody response

was suppressed but responses to foreign antigen were

preserved. Finally, little is currently known about the

role of regulatory T-cells (Tregs) in SLE nephritis. In

human SLE there appears to be a global depletion of

CD4þCD25þ regulatory T-cells. An initial study of

55 patients, however, showed no differences in Tregs

between patients with renal and nonrenal flares [112].

Several studies in mice address the therapeutic potential

of Tregs for SLE. Depletion of Tregs accelerated renal

disease in NZM2328 mice. Unfortunately, even though

the anti-DNA response was suppressed upon transferring

back the CD4þCD25þ T-cells, the renal disease did not

reverse [113]. Similarly, transfer of exogenously expanded

Tregs into NZB/W mice resulted in only modest suppres-

sion of disease [86]. In contrast, CD4þCD25þ and CD8þ
regulatory T-cells induced with low doses of nucleosomal

peptides in SNF1 mice [87�] or with anti-DNA immu-

noglobulin peptides in NZB/W mice [114] suppressed

autoantibody responses and delayed the onset of nephri-

tis. Clearly more work is needed to define the therapeutic

potential of these cells in SLE nephritis.

The study of transgenic and gene targeted mice has

shown that many different immune perturbations can

result in an SLE-like phenotype with varying degrees of
orized reproduction of this article is prohibited.
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Table 1 New immune interventions for SLE nephritis in mouse models

Mechanism Target Approach Timing Strain Comments

Improved disease
Antigen specific tolerance Laminin [91] Inhibitory peptide 2 months MRL/lpr
Antigen specific tolerance Nucleosome [87�] Histone peptide 3 months SNF1 Robust/induced Tregs
B cells BAFF (BLyS) [92��] Receptor fusion proteins 5 months or 7 months NZB/W robust/remission
B cells FcRIIb [93��] FcRIIb bone marrow Young NZM2410
B cells FcRIIb [93��] FcRIIb bone marrow Young BXSB
Chemokine CX3CL1 [94] Dominant negative 2–3 months MRL/lpr
Chemokine CCR2 [95] Knockout MRL/lpr
Chemokine CCR1 [96] Small molecule antagonist 5–6 months MRL/lpr Very modest
Complement C5a [16] Anti-receptor antibody 3 months MRL/lpr Modest
Cytokine PDGF [97] Receptor antagonist 4 months MRL/lpr
Cytokine switch IL-27 [88��] Knockout MRL/lpr Switch to membranous
Inflammation IB-PI3Kg [98] Inhibitor 2–3 months MRL/lpr
Inflammation IB-PI3Kg [99] Knockout IA-PI3Ktg
Innate immunity IFNb [100�] Cytokine 3 months or 5 months MRL/lpr robust
Innate immunity TLR9 [85] Knockout B6 FcRII�/� Opposite in MRL/lpr
Innate immunity TLR9 [101] G rich DNA 3–6 months MRL/lpr Opposite to knockout
Innate immunity CRP [102] Protein 6 weeks or 4 months MRL/lpr
Natural autoantibodies DNA [103�] IgM anti-DNA Ab 4 months or 6 months NZB/W
Tregs CD4 cells [86] Exogenously expanded Prediseased NZB/W modest

Worsened disease
Angiogenesis VEGF [104] Anti-receptor antibody 2 months NZB/W
Innate immunity TLR9 [90�] Knockout MRL/lpr
Innate immunity DC [105] Necrotic DC 1–3 months MRL/lpr
Innate immunity TLR3 [106] Poly I:C 4 months MRL/lpr
Innate immunity TLR7 [107] Imiquamod/ssRNA 4 months MRL/lpr
Innate immunity IFNa [89] Receptor knockout MRL/lpr Opposite in NZB/W
Innate immunity IFNa [108] Cytokine 3 months NZB/W

BAFF (BLyS), B lymphocyte stimulator; FcR, Fc receptor; CX3CL1, fractalkine; CCR, chemokine receptor; PDGF, platelet derived growth factor;
IB-PI3Kg, PI3 kinase gamma IB; TLR, Toll-like receptor; CRP, C reactive protein; VEGF, vascular endothelial growth factor; DC, dendritic cell.
renal involvement and varying rates of progression to end

stage renal disease [23�,115]. These studies emphasize

that the balance between immune cell activation and

survival is crucial for maintaining self-tolerance and pre-

venting autoimmunity. The various spontaneous mouse

models of SLE also have different immunologic profiles.

For example, the proliferative kidney disease of MRL/lpr

mice is associated with high levels of the Th1 cytokine

IFNg [116]. Interestingly, downregulation of IFNg as a

result of IL-27 deficiency does not abrogate disease but

switches the renal immunoglobulin deposits to the Th2-

like IgG1 isotype and the renal disease to a pure mem-

branous phenotype [88��]. In contrast, high levels of the

Th2 cytokine IL-4 are associated with sclerotic disease in

the NZM2410 mouse [116]. Not surprisingly therefore,

striking differences in responses to immunologic inter-

ventions have been observed in different mouse models.

For example, deletion of the IFNa receptor prevents

SLE in the NZB/W mouse [117] but worsens end organ

disease in the MRL/lpr mouse [89]. In the B6.Sle2 mouse

B-cell hyperreactivity is associated with low levels of

type I interferons and is reversed by administration of

type I interferon [118]. In contrast, IFNa accelerates

disease in the NZB/W mouse [16]. Deletion of Fc recep-

tors is protective in NZB/W mice [9] but not in MRL/lpr

mice [10]. Similarly, TLR9 deficiency is renal protective

in C57BL/6 FcRII deficient mice [85�] but worsens end

organ disease in MRL/lpr mice [90�]. These differences

among the mouse models parallel the emerging
opyright © Lippincott Williams & Wilkins. Unautho
appreciation of heterogeneity in human SLE and point

to the complexity of applying new treatments to diverse

human populations. These studies also suggest that

multiple animal models will be needed to study res-

ponses to new therapies and to dissect pathogenetic

mechanisms of SLE nephritis. Investigation of multiple

animal models may also anticipate potential problems in

human clinical trials.

Conclusion
Despite recent advances, treatment of SLE nephritis

remains a challenging clinical problem. Barriers to trials

for induction and maintenance of renal response remain

formidable. Given the variability of disease among SLE

patients and the molecular heterogeneity observed in renal

biopsies, even those with comparable histology, thera-

peutic interventions are likely not be successful in all

patients and careful consideration will need to be given

to trial design, especially the application of post-hoc

analyses [119��]. Animal models allow intensive study of

disease mechanisms and afford an opportunity to test

potential therapeutics. Multiple models must be evalu-

ated, however, in order to fully understand the full hetero-

geneity of disease mechanisms. There is an urgent need

for an improved understanding and definition of the phe-

notype of human lupus nephritis based on clinical, histo-

logic, immunologic, genomic and proteomic approaches.

As human clinical trials proceed, these phenotypes need

to be linked prospectively to responses to therapeutic
rized reproduction of this article is prohibited.
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intervention. Such an endeavor will require an intense and

organized effort by all involved but will result not only in

improved understanding of pathogenetic mechanisms

but in treatments tailored for the many subsets of

lupus nephritis.
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