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Peripheral pulse oximetry (SpO2) is probably the greatest 
technological advance for continuous monitoring since 
electrocardiography. It has almost become a mandatory clinical tool [1], 
despite it never having been subjected to a clinical outcome validation 
[2,3]. Pulse oximetry is widely used for monitoring oxygenation with 
empirical alarm limits to avoid hypoxia. Nevertheless, its measurement 
has many important limitations: SpO2 is effective only in measuring 
the degree of haemoglobin saturation at a short point in time; does not 
reliably predict changes in oxygen saturation (SaO2); is not reflective 
of oxygen supply to tissues; and has not been demonstrated to 
influence perioperative outcome [4]. This paper is to reiterate the well-
known fact that low SpO2 does not necessarily mean tissue hypoxia, 
maintaining SpO2 above 92% is not necessarily protective of hypoxia 
[5] and empirically imposing SpO2 ‘limits’ to minimise errors [6] may 
become an hindrance to medical evolution if used as a heuristic for 
clinical decision making [7].

The terms hypoxia and hypoxemia are not interchangeable. 
Hypoxemia is arterial oxygen tension (PaO2) below normal values. 
Hypoxia is the failure of oxygenation at the tissue level triggering 
anaerobic metabolism. SpO2 closely associates with the former but not 
necessarily with the latter. Hypoxia may not be present in patients with 
hypoxemia if the patient compensates for a low PaO2 by increasing 
oxygen delivery. This is typically achieved by increasing cardiac output 
or decreasing tissue oxygen consumption. Conversely, patients who are 
not hypoxemic may be hypoxic if oxygen delivery to tissues is impaired 
or if tissues are unable to use oxygen effectively. Pulse oximetry is 
frequently used to substitute for arterial blood gas monitoring as a 
non-invasive surrogate marker of PaO2 for a SpO2 between 80% and 
97% [8]. A rise in SpO2 from 88% to 92% increases the oxygen content 
in blood by approximately 4%. In contrast, raising haemoglobin 
concentration from 8 to 12 g/l alone increases the oxygen carrying 
capacity by one third. If the cardiac output is doubled in this situation, 
the oxygen delivery to tissues can be increased by well over 60% without 
any change in SpO2. Nevertheless, hypoxemia (low PaO2) is the most 
common cause of tissue hypoxia [9], hence the need to support acute 
reductions in SpO2 with oxygen therapy until the cause in resolved.

Despite the poor association between tissue hypoxia and SpO2, 
patients with chronic lung disease are strongly advised to use oxygen if 
their SpO2 drops below 88% during exercise. Yet athletes are subjected 
to high intensity and high volume training to promote enhanced 
performance without additional oxygen [10]. In this context, prompting 
patients with chronic lung disease to use oxygen if their SpO2 fall below 
88% during exercise is unfair, especially in the absence of credible 
evidence to claim that SpO2 less than 88% during exercise is damaging. 
Although submaximal oxygen saturation during exercise has not led 
to any untoward cardiac events in lung disease [11], empirical use of 
oxygen may prevent the triggering of natural mechanisms for tolerance 
or recovery. This kind of patient advice based on ‘logical’ thinking in 
the absence of sufficient evidence could therefore bring needless harm 
whilst adding unnecessary expense to health care services. 

Indeed the evidence for the harmful effects of oxygen is becoming 
more widely recognised. One example is the withdrawal of oxygen 
use for neonatal resuscitation, where decades ago, use of oxygen 
was the norm [12]. This practice is now considered harmful [13,14]. 
Similarly, evidence against the use of oxygen in adult CPR is emerging 
[15]. On the contrary, it should be noted that long term use of oxygen 
for symptomatic relief has benefited selected patients with hepato-
pulmonary syndrome, a situation of hypoxemia in chronic liver 
disease resulting from pulmonary vascular dilation characterised by 
anatomical shunting [16]. 

There are a number of changes in the heart and pulmonary 
circulation occurring in humans living permanently at high altitudes 
i.e., in low oxygen tension environments. These adaptations are not 
quite comparable to that of temporary residents at high altitudes, 
nor those experimentally exposed to acute hypoxia [17-20]. Thus, the 
natural adaptation to one’s surrounding should be another caveat in 
the decision-making process behind providing oxygen therapy [21,22].

During exercise, high cardiac output may compensate and deliver 
adequate oxygen to tissues despite lower recordings of SpO2. Hypoxia 
ensues when aerobic metabolism in tissues turn to anaerobic for energy 
production. In ‘resting’ states (including anaesthesia and hypothermia), 
energy requirements are reduced and low SpO2 may be tolerated 
longer. Low SpO2 is not a reflection of tissue hypoxia. Indeed a patient 
with high haemoglobin (15 g/l) with low SpO2 (90%) and central 
cyanosis may not be hypoxic [23]. Therefore, we need to distinguish 
the low SpO2 resulting from hypoxic-hypoxia situations (low FiO2, 
airway obstruction, hypoventilation) from that of low SpO2 resulting 
from venous admixture (reversed or extra cardiac arteriovenous 
shunts, lung collapse including one lung anaesthesia). The former 
needs urgent action, as both arterial and venous blood are desaturated 
with no capacity for compensation, whereas the latter needs careful 
manipulation to minimise the shunt fraction to avoid tissue hypoxia. 

Low SpO2 from venous admixture is less likely to induce anaerobic 
metabolism and hypoxia. For example, in cyanotic congenital heart 
disease, there are children living without evidence of hypoxia with their 
SpO2 readings in the 80’s or sometimes 70’s. A similar situation of low 
SpO2 is seen in reversed shunt situations in anaesthesia [24]. During 
venous admixture, a convenient way to increase mixed venous and 
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thereby arterial oxygenation is to raise cardiac output. Therefore, pulse 
oximetry is not a diagnostic tool that defines definitive therapy: it is a 
heuristic used to minimise human error.

During one lung anaesthesia, the SpO2 improves when the blocked 
lung collapses or when the patient is positioned with the ventilated lung 
dependent (due to reduction in shunt fraction). Hypoxic Pulmonary 
Vasoconstriction (HPV) is an essential physiological response that 
minimizes this shunt [25], reducing V/Q mismatch by diverting 
blood flow away from the under ventilated lung. The HPV response is 
maximal at normal pulmonary vascular pressure and reduced at either 
high or low pulmonary vascular pressure. One can only attain maximal 
HPV when oxygen partial pressure in venous blood (PvO2) is normal, 
a decreased response seen with either high or low PvO2. Therefore, 
the use of inhalational anesthetic agents and other vasodilating drugs, 
together with high or low Fraction of Inspired Oxygen (FiO2) will 
diminish the HPV response, including in children [26]. 

Oxygenation during One Lung Ventilation (OLV) depends not 
only on the magnitude of shunt fraction but also on the oxygenation 
of the shunted blood [27]. Thus, factors leading to a decrease in the 
oxygenation of the shunted (venous) blood (states of increased oxygen 
extraction, low cardiac output, low hemoglobin levels) compromise 
the ‘buffering’ capacity against tissue hypoxia. Under limited 
circumstances, pursuing increases in cardiac output may benefit 
arterial oxygenation during one-lung ventilation; for example SpO2 less 
than 90% may be tolerated poorly in anaemic patients with right to left 
cardiac shunts [28]. Furthermore, low hemoglobin concentrations can 
increase shunt fraction  and decrease oxygenation [29,30].  Therefore, 
increasing cardiac output and normalising haemoglobin concentration 
remain the main clinical interventions that can enhance oxygen 
delivery to tissues in this situation despite low SpO2 readings. However, 
this approach is not a panacea and does not obviate the necessity to 
optimize dependent lung volume [31].

Therefore, in venous admixture situations, attention to cardiac 
output, oxygen expenditure, venous saturation, and haemoglobin 
levels are needed to improve tissue oxygenation [32]. 

In this era of 21st century medicine, we need additional 
considerations to cope with increasing surgical complexity. For 
example, the increased recognition of the advantages of Video Assisted 
Thoracoscopic Surgery (VATS) in children has reiterated the need for 
efficient one lung ventilation [33]. During one lung ventilation for 
VATS, there are additional factors that need focus: the use of positive 
pressure in pleural space; mechanical shift of the mediastinum; the 
effects of added CO2 upon vascular adaptive responses to hypoxia and 
the oxygen dissociation curve; and increased V/Q mismatch (due to 
decreased functional residual capacity and tidal volume resulting from 
general anesthesia, suboptimal patient positioning, surgical retraction 
and mechanical ventilation) [34].

A reliably measured [35] SpO2 of 92% is considered the lowest 
clinically acceptable level by established norms of clinical practice at 
any age, with an exception of 88% as the lowest in chronic lung disease. 
This is despite neither a SpO2 below 92% having been proven to be 
directly associated with tissue hypoxia, nor a SpO2 above 92% proven 
to exclude it. This has created clinical limitations especially in the era 
of increasingly ‘manager driven’ medicine, compounded by top-down 
target pressures and blame culture if staffare in breach of guidelines 
[36-38]. When the SpO2 is low, therapeutic administration of oxygen is 
logical until the cause is found. Nevertheless, clinicians should consider 
each scenario in its clinical context, with oxygen delivery at tissue level 
as their ultimate end goal.
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